【理學(xué)?學(xué)術(shù)報告】Threshold dynamics of a time-periodic nonlocal dispersal SIS epidemic model with Neumann boundary conditions

文章作者:陳珊珊發(fā)布時間:2024-07-05瀏覽次數(shù):283

報告摘要: In this talk, we study a time-periodic nonlocal dispersal susceptible-infected-susceptible epidemic model with Neumann boundary conditions, where the total population number is constant. First, we investigate limiting profile of the spectral bound for a time-periodic nonlocal dispersal operator, and then obtain asymptotic behavior of the basic reproduction ratio of the model as the dispersal rates go to zero and infinity, respectively. Next, we establish the existence, uniqueness and stability of steady states of the model in terms of the basic reproduction ratio. Finally, we discuss the impacts of small and large diffusion rates of the susceptible and infectious populations on the persistence and extinction of the disease.

 

報告時間:2024711日(周四)下午15:30-17:00,

報告地點:線下,H203

 

 

報告人簡介:

 

王其如,中山大學(xué)數(shù)學(xué)學(xué)院教授、博士研究生導(dǎo)師,中國工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會理事、數(shù)學(xué)與國防創(chuàng)新委員會委員、數(shù)學(xué)模型專業(yè)委員會委員,廣東省和廣州工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會理事長、黨支部書記。王教授從事微分方程與動力系統(tǒng)、數(shù)學(xué)建模等方面的研究及應(yīng)用,主持完成國家自然科學(xué)基金面上項目4項、在研1項,在國內(nèi)外學(xué)術(shù)期刊J. Differential EquationsAdv. Nonlinear Anal.、J. Nonlinear Sci.、Nonlinear Anal. Real World Appl.、Discrete Contin. Dyn. Syst.Fract. Calc. Appl. Anal.、中國科學(xué)數(shù)學(xué)(中、英文版)等發(fā)表相關(guān)學(xué)術(shù)論文140 余篇。是德國《數(shù)學(xué)文摘》和美國《數(shù)學(xué)評論》的評論員等。


首頁  學(xué)術(shù)講座

關(guān)閉